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Abstract
The growth profile of microorganisms in an enclosed environment, such as a bioreactor

or flask, is a well studied and characterized system. Despite a long history of examina-
tion, there are still many competing mathematical models used to describe an output of
the microorganisms, namely the number of bacteria as a function of time. However, these
descriptions are either purely phenomenological and give no intuition as to the biological
mechanisms underlying the growth curves, or extremely complex and become computa-
tionally unfeasible at the population level. In this paper, we develop the Process Pathway
Model by modifying a model of sequential processes, which was first used to model robust-
ness in metabolic pathways, and demonstrate that the Process Pathway Model encapsulates
many features and temperature dependence of bacterial growth. We verify the predictions
of the model against growth data for multiple species of microorganisms, and confirm that
the model generates accurate predictions on temperature dependence of bacterial growth.
The model has five free parameters, and the simplifying assumptions used to build the
model are built upon biologically realistic notions. The Process Pathway Model accurately
models a microorganism’s growth profile at an intermediate level of complexity that is
computationally feasible. This model can be used as both an conceptual model for think-
ing about systems of bacterial growth, as well as a computational model that operates at
level of complexity that is amenable to large scale simulation. This balance in accuracy
and intuitiveness was accomplished by using realistic biological assumptions to simplify the
underlying biology, which may point the way forward for future models of this type.

1 Introduction

The growth profile of microorganisms in an enclosed environment, such as a bioreactor or flask, known1

as batch culture, is a commonly used and well studied and characterized system [8, 20]. It has ap-2

plications to many fields, including food science, microbiology, experimental evolution, and bioreactor3

engineering [4, 5, 15, 24]. However, despite a long history of examination, there are still many compet-4

ing mathematical models used to describe the output of the system, namely the number of bacteria as5

a function of time. Furthermore, these descriptions are either purely phenomenological, which give no6

biological intuition into the mechanisms underlying the growth curves, or extremely complex, becoming7

computationally unfeasible at the population level. The most common empirical models are the Logistic,8

Gompertz, van Impe, and Baranyi-Roberts, which describe growth profiles as concentrations over time9

for a population [2, 7, 23]. At the higher end of complexity, the full cell computational model of Karr10

et al. [13] predicts division time as a function of fundamental metabolic processes for a single low com-11

plexity species, Mycomplasma genitalium. Here we build off of a model of sequential processes developed12

by Kacser and Burns, originally used to model enzymatic robustness in metabolic pathways [11, 12], in13
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order to develop a model of intermediate complexity between an empirical model and full cell metabolic14

integration. By adding temperature dependence to the simple model of Kacser and Burns [11], our model,15

termed the Process Pathway Model, encapsulates many features and temperature dependence of bacterial16

growth. Our results demonstrate that a relatively simple mechanistic model can be used to accurately17

describe and predict the dynamics of a complex biological system while maintaining biological relevance,18

computational tractability, and broad applicability.19

Previous models of bacterial growth have been developed to predict bacterial growth rates as functions20

of time and temperature [2,3,9,21,22,25]. Additional features that models are designed to predict are lag21

time, which is the time the bacteria spend in a stationary state before growing; carrying capacity, which22

is the maximal concentration that the bacteria grow to; and maximal growth rate, all as functions of23

variables such as temperature and pH. In addition to closed-form equations, differential equation models24

have also been applied to the problem of bacterial growth rates. The most common of these models is the25

Baryani-Roberts model [2, 3]. The equations of the model are integrated to obtain growth curves, and26

the predictions are typically better than those of closed-form equations, though parameters such as lag27

time, maximal growth rate, and carrying capacity have to be explicitly added to the differential equation28

models (see Supplementary Data: Fig. S4 for full comparison of models). Refinements and additions to the29

Baranyi-Roberts and van Impe models have had some success is predicting population level phenomena30

by approximating underlying processes, but these models remain highly phenomenological with little31

ability to extract biological insight into key parameters, such as the lag time [1, 14, 17–19, 25]. Other32

empirical models such as the Ratkowsky model, asymptote model, and hyperbola model describe a single33

aspect of bacterial growth, such as growth rate, carrying capacity, or lag, respectively, as functions of34

temperature, and are adaptable to numerous species of bacteria [21, 22, 26–28]. However, each empirical35

model is designed to explain only a single aspect of bacterial growth, such as density as a function of36

time, carrying capacity, or lag time, but no model has successfully integrated all of these features into a37

greater framework.38

To further the understanding of the underlying phenomenon of bacterial growth and predict many39

key features of growth in a way that is computationally feasible, we introduce the Process Pathway40

Model. While abstract in nature, the model is rooted in the fundamental processes of biology, without41

becoming overly complex. The model is derived from a model of enzymatic robustness first put forward42

by Kacser and Burns [11]. However, rather than individual enzymes, gene expression and other cellular43

and physiological processes are modelled as being the underlying phenomena in the model. The model44

predicts key features of growth, specifically the lag time, maximal growth rate, and carrying capacity,45

as functions of temperature with similar accuracy to existing models of bacterial growth, but with more46

biological meaning and computational tractability. Additionally, the model can predict growth under47

fluctuating temperatures. Thus the model is useful on two levels; firstly as a model of simplifying48

biological assumptions to distill the most important abstractions involved in bacterial growth. Secondly49

the Process Pathway Model can be used as an accurate model to make predictions of the quantitative50

parameters involved in bacterial growth51

2 Material and Methods52

2.1 Mathematical Model53

The Process Pathway Model consists of a chain of N processes, each processing an input and generating54

an output. Each process can be thought of as a series of physiological and gene regulatory activities.55

For example, one process could model the up regulation of gene expression in a particular metabolic56

pathway as a result of exposure to a novel resource rich environment. The totality of these processes,57

each representing a different cellular activity, comprise the network of cellular metabolism.58

Each process in the chain of N processes is governed independently by Michaelis-Menten kinetics,59
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resulting in a flux, φi between processes given by:60

φi =
Si−1 ∗ Vmax,i

KM,i + Si−1
(1)

for i = 1, 2, 3, ..., N , where SN is the concentration of the output of process N . For this model we61

assume no flux into S0 and the flux out of SN is given by a linear death rate. The dynamics for the62

variables Si is then given by:63

dSi

dt
=
Si−1 ∗ Vmax,i

KM,i + Si−1
− Si ∗ Vmax,i+1

KM,i+1 + Si
(2)

for i = 1, 2, 3, ..., N − 1,64

dS0

dt
= −S0 ∗ Vmax,1

KM,1 + S0
(3)

for i = 0 and65

dSN

dt
=
SN−1 ∗ Vmax,N

KM,N + SN−1
−D ∗ SN (4)

for i = N (Fig. 1 Panel A). S0 represents the concentration of the limiting resource, and is subsequently66

reduced as it is consumed by the process generating S1. The initial value of S0 is a free parameter, while67

the initial value of all other Si are set to 0 to model an initial state before growth has begun. The68

concentration of bacteria at time t is taken to be the value of the final process, SN (t), while the value69

of all other Si(t) represent the activity of the intermediate processes (Supplemental Figures: Fig. S1).70

Here, the final process is taken to represent the progress of the final metabolic pathway in the chain, in71

this case that of reproduction. The parameter D represents the natural death rate of the population.72

Vmax,i and KM,i here follow the same intuition as traditional Michaelis-Menten kinetics, where Vmax,i73

represents the maximal activity of each process, and KM,i is the concentration of substrate at which the74

process is at half of its maximal activity. In the original model of Kacser and Burns [11], KM,i were75

free to vary between enzymes; however here we take KM,i to be equal for all processes to reduce the76

number of free parameters without sacrificing significant accuracy. Other instatantiations of this model77

may benefit from the relaxation of this constraint.78

Temperature dependence of each process is incorporated by modelling a temperature dependence of79

the parameter Vmax,i. The functional form is a modified version of the function described by Daniels80

et al. [6], although the exact form of the temperature dependence did not significantly alter the results.81

The primary features of the temperature dependence that was salient for the model were the peak and82

the minima of the temperature dependence.83

It is important to note here that while the equation for temperature dependence contain multiple84

parameters, they are not all free parameters, as the biological constraints effectively reduce the set of85

free parameters for temperature dependence of growth to a single value, visualized as the temperature86

of maximal growth. Thus, in all, this model has effectively three free parameters for defining bacterial87

growth; the maximal growth temperature defining the growth curve, S0, and KM,i. With the use of these88

parameters and the above assumptions which were used to construct the model, we can then generate89

predictions throughout the entire biokinetic range for the pertinent characteristics of bacterial growth.90

In order to determine the optimal value for N , the number of processes in the chain, we compared91

experimental data from growth of Escherichia coli to the predictions of the model, yielding a optimal92

prediction of N = 8 (Supplemental Figures: Fig. S2). This is in line with predictions of the diameter of93

process networks in bacteria, as demonstrated by the whole cell computation model of Karr [13] utilizing94

6 independent metabolic ”compartments”. Furthermore, this result is robust for a wide range of values95
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of N (see Supplemental Figures: Fig. S3), and these values are likely to be widely applicable, as network96

diameter scales with the logarithm of network size [10].97

Applying the Pathway Process Model to data obtained from E. coli at a single temperature resulted98

in an accurate prediction of growth (Fig. 2 Panel A). The prediction was comparable to existing models of99

bacterial growth (Supplemental Figures: Fig. S4). Furthermore, the application of the Pathway Process100

model to data obtained of growth under a fluctuating temperature profile (Fig. 2 Panel B) fit the data101

as well as existing phenomenological models (Supplemental Figures: Fig. S5)102

In order to test the ability of the model to predict the effects of temperature on the properties of103

bacterial growth, we determined a single set of parameters that best matched the data for growth rate,104

µ, for Lactobacillus plantarum data from Zwietering et al. [27] (Fig. 3 Panel A). The plot of the function105

for Vmax,i(T ) using the parameters in Table S1 is shown in (Supplemental Figures: Fig. S5). It should be106

noted that the curve in this figure is derived experimentally, and is one of the few free parameters fed into107

the model. The results of the growth rate across the full dynamic range of the model are shown in Fig. 1108

Panel C alongside the data raw data and the prediction from the empirical fit model. Zwietering et al.109

obtained values of µ, lag time, and carrying capacity by fitting bacterial count data to a Gompertz curve,110

so for consistency this is the same method used to extract parameters from the growth curves obtained111

from the Pathway Process Model. The algorithm used to estimate parameters and derive results is112

summarized in Fig. 1 Panel B.113

2.2 Computational Modelling114

All computations were performed in MATLAB 2017a (Mathworks, Natick, MA). Solving of differential115

equations were performed using the function ode23s. Gompertz curves were fit using the Marquardt116

algorithm implemented in MATLAB.117

Parameters for the temperature modelling were optimized by applying a gradient descent algorithm118

across all free parameters to minimise the least squares error between the predicted maximal growth119

rate, µ, and the data from Zwietering et al. Figure 2, except for D, which was chosen to be small. The120

least squares values were calculated by fitting a Gompertz curve to the output of the model integration,121

and extracting the parameter µ from this fit at each temperature. Once the parameters for temperature122

dependence were established using this procedure, the lag time and carrying capacity were similarly123

extracted from the Gompertz fit using the same parameters as for the maximal growth rate, µ. Parameters124

for all values are given in Table S1.125

2.3 Data for Bacterial Growth Measurements126

A derivative strain of Escherichia coli REL606 was used to seed the experiment. Bacteria were grown127

in M9 media with glucose supplemented to 4g/L. Tubes containing media were placed in BioSan LV128

Personal Bioreactor RTS-1C (Riga, Latvia), which controlled temperature to within 0.1◦C. OD850nm129

measurements were taken by the RTS-1C at 2 minute intervals. To seed the culture, 100µL of old culture130

was transferred to a new tube containing 20mL of fresh media.131

Temperature switching and control was performed by the built in function of the Bioreactor RTS-1C.132

Temperature switching was programmed to occur after specified measurements of OD850nm occurred for133

the first time in a growth cycle. After temperature switching occurred, new temperature equilibrium was134

reached in approximately 30 minutes, which is less than the expected doubling time for the bacteria.135

Each of the experiments started by inoculating the medium with 0.1 mL of an overnight culture grown136

at 37 ◦ in minimal media M9 with 10 % glucose. For the evaluation of the temperature dependence of137

the growth parameters, an additional day of acclimation was allowed [16].138
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2.4 Data for Growth Rate, Carrying Capacity, and Lag139

Data for Figure 3 Panels A-C was used with permission from Figures 2, 5, & 6 of Zwietering et al. 1991.140

Data was originally collected from growth measurements of Lactobacillus plantarum in MRS media, with141

growth rates calculated by measuring CFU by titers, and parameters were calculated by fitting the data142

to a Gompertz curve.143

3 Results144

The two primary predictions of the model concerning the growth of bacteria over the entire dynamic145

temperature range, namely carrying capacity and lag time, are shown in Fig. 3 Panels A and B alongside146

the data from Zwietering et al [27]. In fact, aspects of the lag time and carrying capacity as functions147

of temperature are predicted by the model to a higher degree of precision than is seen in the empirical148

predictions. These results were obtained with minimal assumptions about the biology of the system and149

few free parameters.150

The predictions for growth rate as a function of temperature generated by the process pathway model151

are equivalent to the empirical model in predicting the actual growth data (Fig. 3 Panel a). Similarly, the152

carrying capacity data derived from the process pathway model are shown to be similar to the empirical153

model in the middle of the growth range (Fig. 3 Panel C). Additionally, for carrying capacity, a slight154

decrease of the carrying capacity at low temperatures is predicted by the Process Pathway Model but155

not by the Ratkowsky asymptote model [27]. This results is shown both qualitatively and quantitatively156

in the data.157

Additionally, for the lag time, the slight increase in lag time at higher temperatures was not accurately158

captured by the hyperbola model of lag time [27] but is predicted by the Process Pathway Model (Fig. 3159

Panel B). Again, this result is shown both quantitatively and qualitatively as a prediction of the process160

pathway model and in the empirical data, but is not expected or shown in the traditional empirical161

models of bacterial growth.162

The results here are derived from a model that takes in effectively five free parameters, and uses sim-163

plifying assumptions about the dynamics of bacterial growth in order to predict the biokinetic proprieties164

of growth throughout the viable temperature range.165

4 Discussion166

Bacterial growth is a highly complex phenomenon with many influences and complex behaviors. While167

there are numerous models describing growth, all are either empirical or detailed to the extent of being168

computationally burdensome, and none to our knowledge incorporate a framework based on simple ab-169

stractions of fundamental metabolic processes. Additionally, each empirical model is designed to explain170

only a single aspect of bacterial growth, such as density as a function of time, carrying capacity, or lag171

time, but no model has successfully integrated all of these phenomenon into a greater framework. Here172

we have put forward a model that encapsulates many of the pertinent features of bacterial growth, partic-173

ularly in regards to temperature sensitivity, while being computationally tractable enough to be used for174

population level modelling. While biologically, the different phases of growth involve numerous different175

mechanisms and pathways, we were able to successfully abstract them away into their fundamental con-176

tributions in this model. This was surprisingly able to be successfully done with a single set of parameters177

for all phases. Many studies, including experimental evolution and protein structure and stability studies178

take interest in the effects of temperature on metabolic processes. Our model can successfully predict179

the above phenomenon with minimal assumptions and few free parameters. We reiterate that this model180

effectively has three free parameters, and the simplifying assumptions used to build the model are built181

upon biologically realistic assumptions.182
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One of the interesting and counter-intuitive insights gleaned from this model is the relationship be-183

tween lag time and maximum growth rate. Previous models have treated these two variables as inde-184

pendent entities, though perhaps correlated, can be independently modelled. However a direct result of185

the process pathway model is that the lag time is simply a result of the rate of process activity, Vmax of186

each individual process. While this intuitively expected to be the case for the maximum growth rate, the187

more interesting result is that it is also the case for the lag time, which has been traditionally modelled188

as a phenomenon in its own right.189

While this model is not a comprehensive model of bacterial metabolism or reproduction, we believe190

that it represents a form of a ”minimal model”, where the pertinent features of the metabolic processes in-191

volved in reproduction are included, but the extraneous features are abstracted away. We have attempted192

to keep the number of free parameters to a minimum as to not overfit, while still being able to fit the193

data as accurately as models that do not have a basis in the fundamental biology. As such, this model194

represents an example what the authors feel is the appropriate abstraction of biological systems that195

renders them conducive to mathematical modelling and quantification while still retaining fundamental196

biological intuition.197
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